Attached Algae as an Indicator of Water Quality: A Study of the Viability of Genomic Taxonomic Methods

Allison Wood, Senior, University of New Hampshire Alison Watts, PhD, University of New Hampshire

Special Thanks:

- Paul Stacey, Great Bay National Estuarine Research Reserve
- o Jeff Hall, Kelley Thomas and the Hubbard Genome Center
- US EPA Greater Research Opportunities Fellowship Program

Outline:

- o Project Goals
- o Background
- Sampling Methodology
- o Data Analysis & Results
- Next Steps

Project Goals

- #1 Verify that algae constitute a viable ecosystem indicator for Great Bay
- #2 Compare traditional microscopic methods to genomic analysis
 - Microscope \$450/sample (100-1,000 species)
 - Genomic \$50/sample (100,000 species)
- #3 Further explore genomic methods

Why Algae?

- Sensitive to nutrient enrichment
- Short life cycles, react quickly
 - Variety of species
 - Population density
- Estuarine & freshwater
- Easy to collect

Current Applications:

United States Geological Survey (USGS)

- o Porter et al., 2008
- National database of algal metric indicators
 - Including regional indicators
- Categories include:

Trophic condition, Salinity, Chloride, Organic enrichment, pH, Calcium, etc.

Current Applications:

State monitoring programs

- Maine Dept. of Environmental Protection
 - Biomonitoring Program
 - Developed model for assessment using specific indicators for Maine ecosystems with success
 - o TP, TN, % Impervious cover, etc.

Danielson et al., 2011

Sampling Method

- Periphytometer
- Controlled for substrate, time, light, flow, depth
- Glass slides submerged for 2-week intervals

Maine DEP: Surface Collection

Great Bay: Periphytometer

Sample Sites

Exeter, Squamscott and Lamprey
 Rivers; Great Bay

Exeter River

- o Attached algae
- Water chemistry
- Nutrient content

A N A S

S

Goal #1: Traditional Microscopic Analysis

 Algae were identified and % abundance of each species was obtained from each sample site

- o Porter et. al, USGS, 2009
 - 64 Algae classifications (mostly diatoms)
 - Species classified by attributes;
 - Nutrients, pH, salinity, etc.
- Analyzed in combination with site data
- Principal components analysis in JMP

http://clipartfreefor.com/cliparts/microscope-clip-art/cliparti1_microscope-clip-art_03.jpg

Goal # 2: Genomic Analysis Comparison

Microscope methods

Searching for known target

Genomic methods

- Can identify hundreds of thousands of individual organisms, even in small samples
- Unless we can match that DNA/RNA to a known database, can't identify species

Full DNA sequencing

Technology available, very expensive / time consuming

Barcoding

o Identifies species based on only a small segment of DNA sequence

Method: Next-Generation Sequencing

http://www.dnabarcoding101.org/images/dnabarcoding101_logo.jpg

http://www.nata.com.au/nata/images/enews/march2014/dna-barcode.jpg

- Short pieces of DNA/RNA are washed across a flow cell with selected primers
- Those that stick are amplified, forming clusters
- Strands are tagged with indicators one base at a time
- Indicators are hit with a laser, activating a corresponding fluorescent color and read with a camera
- Produces millions of highly accurate reads

Challenges thus far (Goal # 2)

- Algae database are incomplete
- Results not as specific as microscope
 - Unable to resolve most taxa past "family", we need "species" to relate to indicators
- Not sure if database issue or method issue
 - DNA/RNA segment might not provide enough detail
- NO DIRECT COMPARISON POSSIBLE CURRENTLY
 - BUT we have thousands of other microorganisms, such as BACTERIA...

Goal # 3: Further explore genomic analysis

- Using the genomic data
 - Trying to identify other potential indicators from the microorganism information we do have
 - Such as BACTERIA

https://i.ytimg.com/vi/Eghle1k14S8/maxresdefault.jpg

Bacterial Results

- Pink triangles are both upstream sites w/ very high Phosphorus
- o Blue circles are sites downstream in the tidal rivers
- Black squares are sites in Great Bay

Next Steps

- Research
 - Determine if there are additional reference database for algae samples/decide whether to build our own
 - Identify additional indicator species from genomic data
- Regulation
 - Determine if this method holds value for NH stream monitoring programs
 - Early indication of changes in water quality
 - Targeted management efforts

Questions?

