

Non-Point Nitrogen Sources and Transport in the Great Bay Watershed

Michelle (Daley) Shattuck, Jody D. Potter, Ania Kobylinski, Charlie French, Steve Miller, Chris Keely, John Bucci, William H. McDowell

Eutrophication-associated dead zones and the human footprint

Diaz and Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926-929.

Decline in water quality and aquatic life in Great Bay

- New Hampshire's most significant estuary
- Watershed is home to almost 25% of NH's population
- Watershed intersects 52 communities
- Deterioration of water quality and aquatic life
 - Low dissolved oxygen (DO)
 - Increased suspended sediment and nitrogen
 - Loss of eelgrass
 - Loss of oysters and clams
 - Nitrogen impaired

Eelgrass Photo Credit: Fred Short

N loading to Great Bay

- 32% Point Sources
- 68% non-point sources

Objectives

➤ Integrate research with stakeholders to ensure results are useful and accessible

Address these questions:

- 1. How do surface water nitrogen concentrations respond to varying watershed landscape characteristics and N inputs?
- 2. What non-point sources of N reach surface waters?

Integrate research with stakeholders

- Nitrogen sources collaborative advisory board (NSCAB)
 - 15 members
 - Approximately quarterly meetings
- Nitrogen Sources Newsbites 150 diverse stakeholders
- NSCAB trust the science and advocate for improved management

Characterizing nitrogen concentrations...

- 5 extensive sampling campaigns (2010-2012)
- 236 stream sites
 - Urban, suburban and agricultural land use
- Median N concentrations:
 - Dissolved inorganic N (DIN)
 - Nitrate (NO₃)
 - Ammonium (NH₄)
 - Dissolved organic N (DON)
 - Total dissolved N (TDN)

Urban

Suburban

...and watershed landscape features

Human impact

- Human population density (0-2,017/km²)
 - Septic
 - Sewer
- % Impervious (0-68%)
- % Developed (0-100%)
 - High intensity
 - Medium intensity
 - Low intensity
 - Open space

Agriculture

- Cultivated crops (0-17%)
- Pasture or hay (0-68%)

Natural features

- % Forest (0-91%)
- % Scrub shrub
- % Water (0-15%)
- % Wetland (0-37%)

Data Sources:

- Land Cover NOAA
 Coastal Change Analysis
 Program (CCAP) 2006
- Population density –
 Census 2010 and NHDES
 GBNNPSS 2014
- Impervious cover NH GRANIT 2010

DIN controlled by human impact and natural features

		Coefficient	VIP		
	Population density	0.16	0.92		Together
	% Developed	0.08	1.09		explain 29%
	Medium intensity	0.06	0.93	Human	
	Low intensity	0.07	1.06	24%	of the spatial
	Open space	0.08	0.90	2 170	variability in
	% Impervious cover	0.06	0.98	Nistrasi	•
	% Forest	-0.04	0.82	Natural	DIN
	% Wetland	-0.26	1.24	5%	

High intensity development, agriculture, scrub shrub, and water not important predictors

^{*}All variables except % forest and % wetland were log transformed

DIN increases with human population density and decreases with wetlands

DON controlled by natural features and agriculture

	Coefficient		VIP	
% Wetland		0.56	1.56	35%
% Cultivated Crops		0.10	0.52	10/
% Pasture and Hay		0.26	0.54	1%

Together explain 36%

Human population density, development, impervious cover, forest, scrub shrub and water were not important predictors

Characterizing watershed nitrogen inputs

- Used methodology from Great Bay Nitrogen Non-Point Source Study (Trowbridge et al. 2014)
- Atmospheric deposition
- Inputs associated with development
 - Human waste
 - Residential Fertilizer
 - Managed Turf Fertilizer
 - Pet waste (dogs and cats)
- Inputs associated with agriculture
 - Cropland Fertilizer
 - Animal waste (cattle and horses)

Total N
Inputs

TDN and DIN increase with increasing N inputs

- Mainly from N inputs from developed areas
- TDN and DIN are not related to agricultural inputs

Slight increase in DON with increasing agricultural inputs

Are 5 samples adequate?

Summary of N concentrations, landscape characteristics and N inputs

- Human development increases DIN in streams, forests and wetlands remove or retain DIN
 - Agriculture not a significant predictor of spatial variability at watershed scale
- Wetlands are the main source of DON, not human development
 - Slight influence from agriculture
- Models explained 29% of DIN and 36% of DON spatial variability (fair amount unexplained)

Watershed N inputs >> N outputs

What non-point sources of N reach surface waters?

Isotopic signature of Nitrate (15N18O3) can be used to identify sources

Nitrate isotopes in streams and groundwater

Mitochondrial DNA (J. Bucci)

Stream sites	Human	Cow	Dog
Urban human waste removed (9 sites, 26 samples)			
Suburban human waste treated on-site (4 sites, 13 samples)			√
Agricultural (1 site, 5 samples)	X		X
Reference (1 site, 5 samples)	√	X	X

Scent-trained canines to "sniff out" human waste

EPA approved method

- Detect human waste in streams, culverts, storm drains etc.
- Dogs have different detection limits
- Human waste detected at 6 of 7 urban steams
- Human waste detected at 2 of 3 suburban streams
- Not detected at reference site

Environmental Canine Services (ECS)

Sable

Conclusions

- Improvements in land management may reduce DIN, but unlikely to significantly reduce DON
- No silver bullet all types of development matter
- Isotopic signatures of nitrate suggests that most of the nitrate in streams is processed (does not reflect unaltered atmospheric deposition)
- Leaky sewer lines and illicit connections may be an overlooked source of non-point nitrogen

Acknowledgements

Members of:
NSCAB
McDowell lab

Spatial variability is more predictable within the Lamprey

