Permeable Reactive Barriers for Reduction of Nitrate Discharge from Septic Systems – Preliminary Results from a Great Bay Pilot Study

Danna Truslow, PG;

Truslow Resource Consulting, LLC, RCCD
Mark Kelley, PE;

Haley & Aldrich, Inc.

Project Purpose

- To install pilot systems and test effectiveness of Permeable Reactive Barriers (PRBs) in the Great Bay Watershed for nitrogen removal
- To gather shallow groundwater quality data adjacent to existing septic systems to determine septic system nitrogen contribution
- To implement effective nitrogen removal solutions in the Great Bay Watershed as part of the watershed management plan.

Project Partners

Lead Agencies – Rockingham County Conservation District and Strafford County Conservation District

Truslow Resource Consulting LLC – Project Management, Hydrogeology

Haley & Aldrich Inc. and Lombardo Associates – Permeable Reactive Barrier Design and Installation

Site Owners - Durham and Brentwood

Towns of Brentwood and Durham – PRB Construction Manpower, Equipment, and Materials

Absolute Resource Associates - Laboratory

Septic Load to Great Bay Watershed – 29% of Estimated Non Point Source Load

Great Bay PRB Pilot Study

What are some measures that can be taken to reduce nitrogen loading from septic systems?

- Regularly maintain systems and pump septic tanks
- For new systems site properly and use nitrateremoving systems
- Control inorganic nitrogen migration from sources through *PRBs and other passive treatment technologies*.

Pilot Project Tasks

- Well installation and testing to determine site hydrogeology – 2014
- Pre- installation GW and SW design sampling and baseline monitoring – Year 2014, 2015 – Nitrogen species, BOD, dissolved metals, alkalinity, field measured pH, DO, SC
- Brentwood PRB design and installation –October 2015
- Durham PRB design and permitting 2015, Installation 2016
- Post installation monitoring 2015 and 2016
- Evaluation and Outreach 2015 and 2016

Criteria for Project Sites

- Active septic system
- Shallow groundwater with predictable flow path
- Sandy overburden underlain by restrictive silt/clay
- Nearby surface water
- Willing landowner
- Accessible site for PRB installation

Site Locations

Permeable Reactive Barrier (PRB) Demonstration: Showing Nitrate Removal Using PRB

SITE DESIGNATION	LENGTH OF NITREX [™] PRB	DEPTH OF NITREX [™] PRB
RESIDENTIAL SYSTEM (600 GPD ±) DURHAM, NH	50 FT	5 FT
COMMUNITY SYSTEM (8,000 GPD ±) BRENTWOOD, NH	110 FT	8 FT

NOTES:

- ASSUME DEPTH IS 1 FT INTO CLAY AND 1 FT ABOVE TYPICAL GROUNDWATER DEPTH.
- 2. TYPICAL NITREX PRB WIDTH TO BE 6 FT.

Wood Chip Bioreactors

- Low-cost carbon source for denitrification
- In-stream reactors and shallow subsurface reactive barriers are simple to install and maintain

Bacteria +C + $N0_3 \Rightarrow N^2$ (Carbon + nitrate) \Rightarrow (nitrogen gas)

Great Bay PRB Pilot Study

Bioreactor for Treating Nitrate in Shallow Groundwater

1, 2 and 8-yr-old woodchips

Nitrate PRB Demonstrations Projects

- 2 PRBs installed in Waquoit Bay,
 Massachusetts in July 2005 Reductions of NO3 from 10 to <0.1 mg/L
- 2 PRBs proposed in Durham and Brentwood, New Hampshire
- Many additional site at University of Waterloo, Canada

Groundwater Quality at Waquoit Bay Data Collected by Woods Hole MBL

Design Challenges

Durham:

Low transmissivity (shallow groundwater with small saturated thickness) and fluctuating groundwater table

Brentwood:

Radial flow away from raised leaching fields – for demonstration of PRB a finite trench will be designed

PRB Design Parameters

Understanding of Site Hydrogeology:

Groundwater velocity about 0.1 ft/day at both sites (Hydraulic conductivity is about 4 x 10-4 cm/sec)

PRB Residence time:

Function of removal goal: Published Values range from 0.7 to 32 mg/L N/day

Width and Depth of PRB:

Width is determined by specified PRB residence time, and depth by site specific geology

Conceptual PRB Designs

- Design Parameter: 2 mg/L N/day Removal
- Residence time of 10 to 20 days:
 Groundwater Travel time or Groundwater Velocity is about 0.1 ft/day at Durham and Brentwood Sites
- **Design Width of PRB** = 1.5 to 2.0 ft wide for a 10 to 20 days Res. Time
- **Depth:** Durham = 5 ft. Brentwood = 8 ft.
- Length: Durham = 50 ft.

 Brentwood = 110 ft.

Durham Site

- Near Chesley Brook tributary of Oyster River
- Failed septic close to house, new septic 2008
- Glaciomarine sand underlain by silt
- $K = 2x10^{-4} \text{ to } 9 \text{ x } 10^{-3} \text{ cm/s}$
- Nitrate 6.2 mg/L at one field-side monitoring well,
- Installation Summer 2016?

Groundwater Elevations (December 2014)

Legend

Groundwater Elevation 0.5' Contours --- Hydrography

Septic System Leach Fields

Great Bay PRB Pilot Study

Rockingham County Conservation District Strafford County Conservation District Permeable Reactive Barrier Demonstration Project Durham, NH

Durham PRB Design: 50 ft. x 1.5 ft. x 5 ft. (deep)

Brentwood Site

- Near Dudley Brook, tributary of Exeter River
- Failed septic area in community septic field
- New area installed in 2012
 - Glaciomarine sand with underlying silt
- $K = 1.5 \times 10^{-4} \text{ to } 3.6 \times 10^{-4} \text{ cm/s}$
- Nitrate 12 to 42 mg/L at wells
- 1.9 mg/L in nearby SW
- Installed October 2015

Groundwater Elevations (December 2014)

Pond flows to Dudley Brook

Legend

Rockingham County Conservation District Strafford County Conservation District Permeable Reactive Barrier Demonstration Project Brentwood, NH

Brentwood PRB Design: 110 ft. x 1.5 ft. x 8 ft.(deep)

Construction of Brentwood, NH PRB – 13 October 2015

CONSERVATION DISTRICT

PRB Placement and Site Restoration

26

CONSERVATION DISTRICT

Monitoring Results

- New monitoring wells installed in and just downgradient of trench
- Nitrate-Nitrogen decline in and near trench
 - 20 to 30 mg/L pre installation
 - Less than 2 to 12 mg/l in and adjacent to trench four months post installation
- Biological Oxygen Demand
 - Pre-installation concentrations < 0.5 to 15 mg/L
 - One month after installation 320 to 408 mg/L in or near trench
 - Four months after installation 32 to 85 mg/L
- Dissolved Oxygen
 - 4 mg/L pre-installation to < 1.0 mg/L post installation at near trench
- Dissolved metals to be monitored in Fall 2016

Nitrate-Nitrogen Concentration at Monitoring Wells Brentwood Permeable Reactive Barrier Pilot Site

PRB Installation - October 2015

Nitrate Concentrations in Wells February 2016

Funding for this project was provided in part by a Watershed Assistance Grant from the NH Department of Environmental Services with Clean Water Act Section 319 funds from the US Environmental Protection Agency

Questions?

